Inverting the Satake map for Sp n and applications to Hecke operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hecke category (part II—Satake equivalence)

Theorem 1. The convolution ∗ admits a commutativity constraint making Sph into a rigid tensor category. There exists a faithful, exact tensor “fiber” functor Sat : Sph → Vect inducing an equivalence (modulo a sign in the commutativity constraint) of Sph with Rep(G) as tensor categories, where G is the Langlands dual group of the reductive group G, whose weights are the coweights of G and vice v...

متن کامل

The Satake Isomorphism for Special Maximal Parahoric Hecke Algebras

Let G denote a connected reductive group over a nonarchimedean local field F . Let K denote a special maximal parahoric subgroup of G(F ). We establish a Satake isomorphism for the Hecke algebra HK of K-bi-invariant compactly supported functions on G(F ). The key ingredient is a Cartan decomposition describing the double coset space K\G(F )/K. We also describe how our results relate to the trea...

متن کامل

Hecke operators and the stable homology of GL(n)

Let R be a field of any characteristic and A a principal ideal domain. We make a conjecture that asserts that any Hecke operator T acts punctually on any Hecke eigenclass in the stable homology with trivial coefficients R of a principal congruence subgroup Γ in GL(n, A), i.e. as multiplication by the number of single cosets contained in T . In the case where A = Z, this conjecture implies that ...

متن کامل

Inverting the Hopf map

We calculate the η-localization of the motivic stable homotopy ring over C, confirming a conjecture of Guillou and Isaksen. Our approach is via the motivic Adams-Novikov spectral sequence. In fact, work of Hu, Kriz and Ormsby implies that it suffices to compute the α1localization of the classical Adams-Novikov E2-term, and this is what we do. Guillou and Isaksen also propose a pattern of differ...

متن کامل

Inverting the Frobenius Map

The famous Frobenius characteristic map is a bijection from the space of characters of a symmetric group S n to the space of homogeneous symmetric functions of degree n. In this note, we prove a formula for the inverse map. More precisely, we express the generating function for the values of an arbitrary virtual character of S n in terms of the symmetric function which is the Frobenius image of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Ramanujan Journal

سال: 2007

ISSN: 1382-4090,1572-9303

DOI: 10.1007/s11139-007-9035-7